

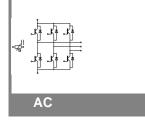
MiniSKiiP[®]2

3-phase bridge inverter

SKiiP 23AC12T4V1

Features

- Trench 4 IGBT's
- · Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532


Typical Applications*

Remarks

- V_{CEsat}, V_F= chip level value
 Case temp. limited to T_C = 125°C max. (for baseplateless modules $T_{c} = T_{s}$)
- product rel. results valid for T_i≤150 (recomm. T_{op} = -40 ... +150°C)

Absolut	e Maximum Ratings	Т _с	= 25 °C, unless otherwise	specified
Symbol	_		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 175 °C	T _c = 25 °C	41	А
		T _c = 70 °C	34	А
I _{CRM}	I _{CRM} = 3xI _{Cnom}		75	А
V _{GES}			±20	V
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; VCES < 1200 V	T _j = 150 °C	10	μs
Inverse	Diode			
I _F	T _j = 175 °C	T _c = 25 °C	30	А
		T _c = 70 °C	26	А
I _{FRM}	I _{CRM} = 3xI _{Cnom}		75	А
I _{FSM}	t _p = 10 ms; sin.	Т _ј = 150 °С	100	А
Module				
I _{t(RMS)}			100	А
T _{vj}			-40+175	°C
T _{stg}			-40+125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _c =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 1 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	$V_{GE} = V, V_{CE} = V_{CES}$	T _j = °C				mA	
V _{CE0}		T _j = 25 °C		0,8	0,9	V	
		T _j = 150 °C		0,7	0,8	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		42	46	mΩ	
		T _j = 150°C		62	66	mΩ	
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,85	2,05	V	
- ()		T _j = 150°C _{chiplev.}		2,25	2,45	V	
C _{ies}				1,43		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,12		nF	
C _{res}				0,09		nF	
Q_{G}	V _{GE} = -8 +15 V			140		nC	
R _{Gint}	T _j = 25 °C			0		Ω	
t _{d(on)}				44		ns	
t,	R _{Gon} = 39 Ω	V _{CC} = 600V		46		ns	
Eon	di/dt = 465 A/µs	I _C = 25A		3,7		mJ	
t _{d(off)}	R_{Goff} = 39 Ω	T _j = 150 °C		330		ns	
t _f	di/dt = 350 A/µs	$V_{GE} = \pm 15V$		62		ns	
E _{off}				2,4		mJ	
R _{th(j-s)}	per IGBT			1		K/W	

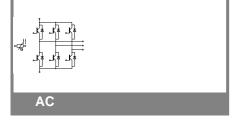
3-phase bridge inverter

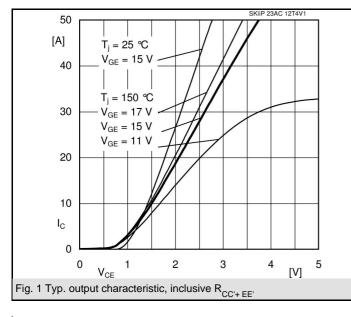
SKiiP 23AC12T4V1

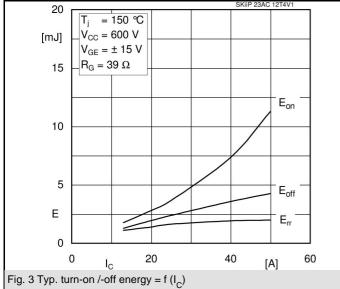
Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse	Inverse Diode						
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2,4	2,75	V	
		T _j = 150 °C _{chiplev.}		2,45	2,8	V	
V _{F0}		T _j = 25 °C		1,3	1,5	V	
		T _j = 150 °C		0,9	1,1	V	
r _F		T _j = 25 °C		44	50	mΩ	
		T _j = 150 °C		62	68	mΩ	
I _{RRM}	I _F = 25 A	T _j = 150 °C		19		А	
Q _{rr}	di/dt = 640 A/µs	-		4		μC	
Err	$V_{GE} = \pm 15V$			1,64		mJ	
R _{th(j-s)}	per diode			1,52		K/W	
M _s	to heat sink		2		2,5	Nm	
w				65		g	
Temper	ature sensor						
R _{ts}	3%, Tr=25°C			1000		Ω	
R _{ts}	3%, Tr=100°C			1670		Ω	

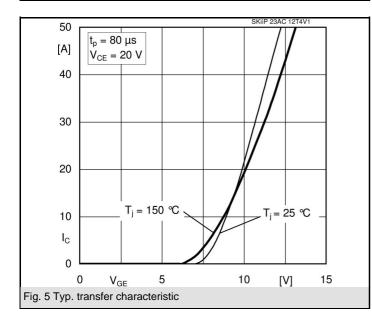
Features

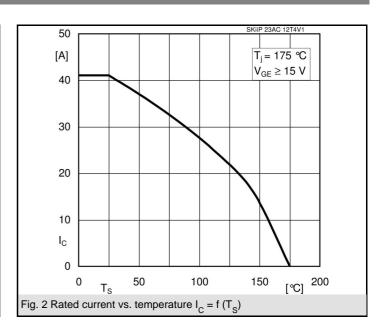
- Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532


Typical Applications*


Remarks


- V_{CEsat} , V_{F} = chip level value Case temp. limited to T_{C} = 125°C max. (for baseplateless modules $T_{\rm C} = T_{\rm S}$)
- product rel. results valid for $T_{i} \le 150$ (recomm. $T_{op} = -40$... +150°C)


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

